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Abstract. A type of self-avoiding random walk whish generates the perimeter of two- 
dimensional lattice-percolation clusters is given. The algorithm has been simulated on a 
computer, yielding the mean perimeter length as a function of occupation probability. 

1. Introduction 

Random walks have frequently been used to model the conformation of linear polymeric 
molecules for physical systems in which the effective pair interaction between segments, 
or the correlation of bond angles, vanishes (see, e.g., Hammersley and Morton 1954, 
de Gennes 1975, 1979, Merajver et a1 1981, Marqusee and Deutch 1981, Tobochnik et 
a1 1982, Redner and Reynolds 1981, Alexandrowicz 1980). Various types of self- 
avoiding random walks on various lattices have been considered, and such properties 
as the relation of the radius of gyration to the mass have been thus studied. 

More complicated geometrically than linear polymers are the branched or cross- 
linked polymers, in which some segments can have more than two bonds. In this case, 
the polymerising system may go through a distinct gelation transition, past which an 
infinite network or gel is formed. To model clusters of branched polymers, both random 
growth models (e.g. Broadbent and Hammersley 1957, Shante and Kirkpatrick, 1971, 
Lubensky and Issacson 1979, Ord and Whittington 1982, Hoshen and Kopelman 1976, 
and Seitz and Klein 1981) and various kinds of diffusive growth mechanisms (e.g. 
Rosenstock and Marquardt 1980, Rikvold 1982, Witten and Sander 1981 and Herrmann 
et a1 1982) have been used. In this paper, we consider the ‘percolation’ clusters formed 
by random site placement on a two-dimensional lattice, and show that the perimeters 
of such clusters can be generated by a type of self-avoiding random walk whose 
properties are described below. The generation algorithm allows the simple simulation 
of cluster perimeters on a computer. Note that random walks have been considered 
on percolation clusters in other contexts: Stanley et a1 (1976) have argued that the 
backbone of a percolation cluster should act like a random walk, and of course there 
is the random walk of a particle diffusing over a percolation cluster discussed by de 
Gennes (1976). 
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In the site percolation model, points (‘sites’) on a lattice are randomly made 
‘occupied’ with a probability, p ,  and left vacant with a probability ( 1  - p ) .  Bonds are 
drawn between adjacent occupied, forming clusters. When p is above the percolation 
point, p c ,  an infinite cluster or gel forms. An example of a two-dimensional cluster 
with n = 11 sites is given in figure l ( a ) ,  where occupied sites are represented by a full 
circle, and vacant sites by a open circle. 

Figure 1. ( a )  An external percolation cluster of n = 11 occupied sites. ( b )  A path around 
the perimeter of the cluster. 

The percolation model should be especially useful to describe the behaviour of 
polymers near the gel point or critical point, where the clusters are large, because 
geometric and steric relations are taken into account, in contrast to mean field models, 
such as the Flory (1953)-Stockmayer (1943) model of polymerisation. The two- 
dimensional percolation on a square lattice that is considered here is a model for the 
reaction of branched polymers in which the basic monomeric unit has four functional 
groups. The percolation model can also be used to describe general agglomeration 
processes, such as the coagulation of colloidal suspensions, and nucleation. 

Bounding each cluster is an external boundary surface and possibly one or more 
internal surfaces, if holes exist within the cluster. In the gel (for p > p c ) ,  only internal 
surfaces can exist. For each value of p ,  0 < p < 1, a large lattice populated with occupied 
and unoccupied sites will contain a collection of both internal and external surfaces, 
with a surface or perimeter associated with each of these surfaces. The perimeter of 
a given surface can be characterised by either the number of occupied sites of the 
clusters which border the surface, or the vacant sites surrounding the surface (or within 
it, for an internal surface). Conventionally, these vacant sites are called ‘perimeter 
sites’. Here we will be concerned with both the occupied sites and the vacant sites at 
the surface. In an external surface, the vacant sites are on the outside, while for an 
internal surface they are on the inside. In the example of figure l(a),  there is an 
internal surface with no = 8 occupied sites and n, = 1 vacant sites, and an external 
surface with no = 11 and n, = 14. 

It has been established (Leath 1976a, b, Reich and Leath 1978, Domb er a1 1975) 
that the total number of perimeter sites (the vacant sites on both external and internal 
surfaces) is proportional to the total number of occupied sites for large clusters, so in 
this sense clusters are ramified: however, little is known for the external surface alone. 
The nature of cluster surfaces enters in theories of polymer kinetics (Ziff et a1 1982a,b, 
1983, Leyvraz and Tschudi 1981, 1982) and of nucleation (Fisher 1967). The algorithm 
which we discuss here generates the surfaces of two-dimensional clusters, and allows 
by simulation the determination of the distribution of perimeter length and mean 
perimeter length of all the surfaces of the clusters on a lattice. This algorithm is derived 
by considering first an algorithm that measures the perimeter on an existing cluster, 
and observing that the cluster does not have to exist beforehand but can be generated 
on a blank lattice during the counting process. The new algorithm produces a sort of 
random walk which generates the perimeter independent of the cluster itself-the 
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interior is not generated. In a computer simulation of the perimeter algorithm, in 
which perimeters with as many as 500 000 sites were generated, it was found that the 
mean perimeter length diverges slower than the mean cluster size, as the percolation 
point is approached. 

2. The perimeter random walk 

First consider the problem of measuring the perimeter of a single surface (either internal 
or external) of a given cluster on a lattice. Following is an  algorithm (for a square 
lattice) that makes a path around the surface, visiting all occupied and  vacant sites at 
the boundary at least once. 

( 1 )  Pick an  adjacent occupied site-vacant site pair at one point on the surface. 
Define a direction by drawing an  arrow from the vacant site to the occupied site and  
move to the occupied site. 

( 2 )  Facing in the direction of the arrow, look at the adjacent site to the left. If the 
site i s . .  . 

(b )  vacant, then go back to 2 ,  now looking in the next direction, in the order left, 
front, right, back. 

(c) occupied, then draw an arrow from the old occupied site to the new occupied 
site, and  ‘move’ to the new site. Go back to 2 ,  now looking in the new left direction. 

(3) Continue this procedure until the path passes the starting point in the same 
direction as it had first been passed. 

(The step 2a will be provided in a modification below.) This algorithm brings one 
on a ‘walk’ around a boundary surface, allowing n ,  and n ,  to be determined by counting 
the vacant sites as they are first encountered in step b,  and  counting the occupied sites 
as they are first encountered in step c. Since either site can be encountered more than 
once, it is necessary to remember whether a site has been previously counted, and  so 
a site can have four possible states: occupied and  counted, occupied and uncounted, 
vacant and  counted, and  vacant and uncounted. For example, the walk around the 
external surface of the cluster in figure l ( a )  is shown in figure l ( b ) .  Repeating this 
algorithm many times, one could find the distribution of no and n,r for all the surfaces 
in the system. This distribution would be characterised by a function P ( n , ,  n , ; p )  
which gives the probability that a randomly chosen vacant site-occupied site pair 
belongs to a surface containing no occupied sites and n ,  vacant sites. The distribution 
can be found equally well by measuring all the surfaces of a single (large) lattice 
populated with clusters, o r  by measuring one surface of a single cluster, then clearing 
off the lattice, and repopulating it with clusters (with the same p )  and repeating. 

Now observe that one could also start x i th  a blank lattice and make the blank sites 
either occupied or  vacant as they are encountered during the perimeter measuring walk. 
That is, now allow three possible states for a site: blank, occupied, or vacant. Start 
with a lattice full of blank sites, except for a vacant-site occupied-site pair at the centre, 
and proceed with the walk algorithm given above, adding the following step after 
step 2 :  

(a )  blank, then make the site occupied (with a probability p )  or vacant (with 
probability 1 - p ) ,  and go to b or c, respectively. 

This procedure will generate cluster perimeters on a blank lattice as a kind of 
random walk. Because the state of a site (whether occupied or vacant) is determined 
by a independent process, and  the state does not change once it has been chosen, it 
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can be seen that the sites will be populated with the same probability as if they had 
been chosen beforehand. Therefore, the probability that a given perimeter is generated 
by this algorithm is the same as the probability that it would be found on an already 
populated lattice. The advantages of generating, rather than measuring, are that only 
one cluster is generated at a time, only those sites along the surface are generated, and 
there are no boundary effects caused by clusters touching the edge of the lattice (until, 
of course, the available computer space for growing the cluster runs out). In counting 
no and n,, one need no longer keep track of counted versus uncounted sites as the 
sites can be counted as they are produced (in step a), and the three states (blank, 
occupied, vacant) are sufficient for both generating and counting boundary surfaces. 
The distribution P( no, n,; p )  then follows by repeating the generating algorithm many 
times, each time on a new blank lattice. 

A step-by-step example of the generation of a percolation cluster by the above 
algorithm is shown in figure 2. Occupied sites are indicated by a full circle, vacant 
sites by a open circle, and blank sites are not shown. In step 1, the initial surface pair 
is shown, with an arrow drawn from the vacant site to the occupied site. According 
to the algorithm, the first site to be 'Iooked at' is the blank site to the left; this site is 
labelled with a question mark. The state of this site is determined by a random process 
which generates a '1 '  with the given probability p and a '0' with probability ( 1  - p ) .  
Say a '1' is found, as indicated in the figure at step 1, then the site is made occupied, 
a new arrow is drawn, and a new blank site is looked at, as shown in step 2. That 
blank site is made vacant, so in step 3, the next blank site is 'looked at'. And so on, 
the randomly chosen string 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0 causes the simple perimeter 
of step 16 to be generated. Note in step 9 a site that has previously been made vacant 
is encountered; in 12, the path is retraced; in 14, an occupied site is encountered, and 
in 16, the original vacant site is encountered. Since the next step would duplicate step 
2, the walk is terminated. An external perimeter with no = 5 and n, = 9 is thus produced. 

1'1' 2'0' 3'0' 4'1 '  5 '0' 6'0' 7 '1' 0.z. 0 0  c l= ,  0 0  

0 
8 '1' 9 10 '0' 11 '0' 12 
0 0  0 0  0 0  00 gm0 : x o  gag0 : ! x 0  

' 0  0 0  " 0 0  0 0 0  

13 '0' I& 15 '0' 16 

Figure 2. Generation of a perimeter by the random walk algorithm. 

The algorithm produces a kind of two-sided self-avoiding random walk, one side 
being composed of vacant sites and the other of occupied sites. The walk can never 
cross the vacant side, while the occupied site is joined whenever it is encountered. 
When p < pc ,  the walk has a strong tendency to turn right and close to make an external 
surface, as in figure 3. For all p ,  0 < p < 1, there is a finite probability that either kind 
of surface can be generated. Near p = p c  large perimeters are generated as the walk 
turns left and right, trying to decide whether to be an external or an internal surface. 
In figure 3 is an example of a large internal cluster of no = 1837 and n, = 1201 sites, 
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Figure 3. A computer-generated internal perimeter containing 1837 occupied sites and 
1201 vacant sites. 

generated at p = 0.593 = p c  in a continuous path by the algorithm. Here the occupied 
sites show up  as connected lines, and the vacant sites show up  as isolated dots. The 
particularly large area of internal blank sites in this cluster is somewhat unusual. 

An internal surface within a cluster or  the gel can be thought of as an external 
surface of a ‘cluster’ of vacant sites, and  an  external surface can be thought of as an  
internal surface of a hole within a vacant-site cluster, o r  the vacant-site ‘gel’, if the 
vacant site system is considered to have a next-nearest-neighbour ( N N N )  interaction 
(vacant-bonds can be drawn between a vacant site and any of its eight closest neigh- 
bours). An algorithm to generate perimeters in the vacant-site system can be found 
by modifying our perimeter algorithm by interchanging the role of vacant sites and  
occupied sites, and  allowing N N N  interaction for vacant sites. This relationship reflects 
the duality between the nearest neighbour and N N N  square lattices (Sykes and Essam 
1963, 1964). 

3. Computer simulation 

A computer simulation of the perimeter generating algorithm was carried out, first on 
a desktop computer whose graphics capabilities proved very useful to visualise the 
surfaces, and  then on a larger computer ( a  Univac 1100) with sufficient speed and 
memory size for quantitive results. Two bits of memory were used to represent the 
three possible states of each site, and a type of data banking scheme which assigns 
blocks of memory to sections of the lattice as they are entered by the random walk 
was used, allowing a virtual lattice of 4096 X4096 sites and  cluster surfaces with no as 
large as 500 000 to be generated, using a memory space of 256 K, 32-bit words. In 
contrast, i f  one memory word were assigned to each lattice point, then a lattice of only 
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5 12 x 5 12 sites could be considered, and  perimeters with ~ 5 0 0 0  would already run into 
the boundary. During these simulations, the value of no was monitored and averaged 
over many runs to yield ( n o ) ,  which is related to P by 

The values for internal and  external perimeters were averaged separately, yielding 
( no)ext and ( no)int. The results of the simulation of L- 180 000 clusters are given in figure 
4, where In (no)ext and In (nJint are plotted as a function of In Jp -pel, using pc  = 0.593. 

-2  t 

- 4 1  ;: ; , , I , -6 
0 1  2 3 4 5 6 7  

-1nlp-p, I 

Figure 4. Results of 180 000 computer simulations of perimeters, plotted with pc=0.593. 
The broken lines have a slope of 2 and imply the behaviour of equation (2).  0 = (no)ex'p < pc; 
a = ( n , ) ' " ' p > p , :  A = ( n J e x t p < p c ;  + = ( n , ) ' " ' p > p , .  

The number of clusters generated for each data point varied from 50 000 at p = 0.1 
and 0.9 to only 64 clusters at p=0.590 and 0.5965. These last two were the closest 
values to p c  before the maximum size ( n o  = 500 000) was reached. Since, at these values 
of p ,  (no) was about 100 000, only a relatively small number of closed perimeters could 
be generated in a reasonable amount of time. 

Clearly, as p + p c ,  the average perimeter size diverges. Past p c  the average size 
again decreases as mainly the holes in the gel contribute to the total perimeter. This 
peaked behaviour is in contrast to the average cluster size, which diverges as p + pc  
but then remains infinite for all p > pc. 

For p < pc,  ( no)lnt < ( no)ext-there is always more external surface than internal 
surface. Evidently, even though a single large cluster can have many internal surfaces, 
the overall external perimeter dominates. The opposite is true for p > pc ,  as can be 
seen in figure 4. 
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The plots in figure 4 suggest that (no)int and  (nojext on either size of p c  have the 
following symmetric critical behaviour near p c :  

where the + refers to p > p c  and - to p < p c ,  with a -- 2.0 * 0.1, A -- 0.5, B 2 0.004. 
The internal surface and  external surface diverge with the same exponent and symmetric 
amplitudes. Alternately, assuming this symmetry, one would conclude from the data 
pc = 0.593 iO.001, consistent with other findings (Djordjevic et a f  1982). The plot is 
very sensitive to small changes in pc .  

Note that the average cluster size diverges as p -+ p c  like 

n = clp -pep (3)  

with y = 2.4 (see Stauffer et a1 1982). Thus, the average perimeter diverges slower than 
the average cluster size. Note, howeve;,, that these two quantitities are averaged in 
two different senses: (2) gives the mean length of a perimeter connected to an  arbitrarily 
chosen perimeter site, while (3) gives the mean size of a cluster connected to an  
arbitrarily chosen occupied site. Thus, the relation of boundary perimeter to area for 
a given cluster does not follow directly. (Note that the relation of Leath (1976) for 
perimeter to area concerns the total perimeter of all the boundaries of a cluster.) 

4. Further remarks 

The proof that the random walks always close on themselves to form closed surfaces 
comes from the idea of the underlying lattice: For every random walk generated, there 
is a lattice populated with occupied and  vacant sites and which contains the perimeter. 
It follows that all random walks close because all surfaces on an  infinite lattice are 
closed. 

Although the perimeter is generated, the 'inside' is not. In larger clusters (such as 
in figure 3), there is generally some open space of blank sites, and one does not know 
if they are occupied or  vacant-thus, the size of the cluster ( n )  is not known. For the 
perimeter distribution function this size is not needed. 

The numbers no and n, are closely related for large surfaces. For a surface of no 
occupied sites and n, vacant sites, a total of no + n, blank sites are therefore visited in 
the random walk which generates that surface. Since the blank sites are made occupied 
with probability p and left vacant with probability 1 - p ,  it follows that no = p ( n o  + n , )  
and n , = ( l - p ) ( n , + n , ) ,  or  

% - n o  P l ( 1  - P )  (4) 
for large clusters. This relation was observed in the computer simulations. Thus, the 
behavior of (n,) is the same as that of (no) described in figure 4 and  equation (2), with 
the amplitudes rescaled according to (4). 

The idea of generating individual perimeters on blank lattices is similar to the idea 
of generating individual clusters on a blank lattice by the basic percolation mechanism, 
where a cluster is generated by a 'flowing fluid' which emanates from the origin and, 
when encountering a blank site, either whets it (with probability p ) ,  creating an  occupied 
site, or permanently blocks it (with probability 1 - p ) ,  creating a vacant site (Broadbent 
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and Hammersley 1957). This algorithm can be used in a computer simulation to 
generate clusters and  find, for example, the average size. Recently, Havlin et a1 (1983) 
use a similar idea to study diffusion on a percolation cluster, generating the cluster 
only as the diffusing particle contacts a n  unvisited site. One can use the cluster-growing 
algorithm to derive the relation between the total number of perimeter sites ( b )  and 
occupied sites ( n )  of a large cluster given by Leath (1976): 

b= n p / ( l  - p ) .  (5) 

For in generating a cluster of n sites and  b perimeter sites, a total of n + b Blank sites 
are encountered, of which np( n + b )  are made occupied and b( 1 - p ) (  n + b )  are made 
vacant. The similarity of this argument to the argument used in deriving (4) explains 
the similarity of (4) and (5). Thus the ratio of total occupied sites to vacant sites of 
a large cluster is the same as the ratio of occupied sites to vacant sites of an  individual 
large surface (for a given p ) .  Once again, because an  individual site can belong to 
many surfaces, these results d o  not say anything about the ratio of external perimeter 
to total size of a cluster. 

The perimeter generating algorithm given here can be generalised easily to any 
two-dimensional lattice. It may be useful in finding p c  accurately for those lattices in 
which the exact value is not known. An interesting question for further study would 
be to find the exponent which describes how the radius of gyration grows with the 
size, for this random walk. 
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